Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures
نویسندگان
چکیده
We present a combined electrical and modeling study to determine the tunneling electron effective mass and electron affinity for HfO2. Experimental capacitance-voltage (C-V) and current-voltage (I-V) characteristics are presented for HfO2 films deposited on Si(100) substrates by atomic layer deposition (ALD) and by electron beam evaporation (e-beam), with equivalent oxide thicknesses in the range 10-12.5 Å. We extend on previous studies by applying a self-consistent 1D-Schrödinger-Poisson solver to the entire gate stack, including the inter-layer SiOx region and to the adjacent substrate for non-local barrier tunnelling self-consistently linked to the quantum-drift-diffusion transport model. Reverse modeling is applied to the correlated gate and drain currents in long channel MOSFET structures. Values of (0.11 ± 0.03)mo and (2.0 ± 0.25) eV are determined for the HfO2 electron effective mass and the HfO2 electron affinity, respectively. We apply our extracted electron effective mass and electron affinity to predict leakage current densities in future 32 nm and 22 nm technology node MOSFETs with SiOx thicknesses of 7-8 Å and HfO2 thicknesses of 23-24 Å.
منابع مشابه
Influence of Electron Charge States in Nanoelectronic Building Blocks
The continued efforts to improve performance and decrease size of semiconductor logic devices are facing serious challenges. In order to further develop one of the most important nanoelectronic building blocks, the metal-oxide-semiconductor fieldeffect-transistor (MOSFET), several major problems have to be solved. This thesis deals with the influence of charge states on two specific issues rela...
متن کاملImproved Electrical Properties of Ge p-MOSFET With HfO2 Gate Dielectric by Using TaOxNy Interlayer
The electrical characteristics of germanium p-metal– oxide–semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO2/TaOxNy are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO2 as gate dielectric, good interface properties, good transistor characteristics, and about...
متن کاملEffects of hydrostatic pressure and temperature on the AlGaN/GaN High electron mobility transistors
In this paper, drain-source current, transconductance and cutoff frequency in AlGaN/GaN high electron mobility transistors have been investigated. In order to obtain parameters of exact AlGaN/GaN high electron mobility transistors such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects a...
متن کاملChallenges & Advances of Mosfets Using High Mobility Material Channels Novel Quantum-corrected Semi-classical Ensemble Monte Carlo Simulator for Nano-scale Iii-v In0.47ga0.53as Tri-gate Finfets Electron Devices & Applications I
Complementary MOSFET (CMOS) using high mobility materials using III-V and Ge channels are expected to be one of promising devices for high performance and low power advanced LSIs in the future under sub-10 nm regime, because of the enhanced carrier conduction properties. The advantages of MOSFETs using those materials can basically originate in the low effective mass, which leads to high inject...
متن کاملDerivation of ionization energy and electron affinity equations using chemical hardness and absolute electronegativity in isoelectronic series
Chemical hardness () and absolute electronegativity () have important applications in chemistry. Inthe conceptual Density Functional theory (DFT), these concepts has been associated with electronicenergy and the relationship with ionization energy (I) and electron affinity (A) of these concepts hasbeen given. In this study, graphical method was used in order to see the relationship with the ato...
متن کامل